

Mobile Telemedicine/Teleconsultation

DEFINING THE FUTURE

Biomedical Applications of the Next Generation Internet Medical Nomadic Computing Applications for Patient Transport

A Project of the National Library of Medicine, The University of Maryland Medicine, The Maryland Center for Telecommunications Research, and Northrop Grumman

Mobile Wireless Communications

- Wireless transmission of audio, video, and vital sign data
- Integration of existing commercial technologies

- Modular, standards-based, open-system components
- Leverages existing communications infrastructure

University of Maryland Medicine

Need: Real-Time Teleconsultation

DEFINING THE FUTURE

Any time-sensitive or remote care/supervision situation where remote expertise is needed - including Non-Medical Scenarios

There are multiple critical care and time-sensitive emergency situations where key expertise is not available to the on-site response team.

Wireless data transmission can be used to bring remote expertise and advice directly to the scene.

Need: Time-Critical Brain Attack

DEFINING THE FUTURE

- Stroke is #1 cause of adult disability (#3 killer)
 - ~ 1.2M strokes/TIAs per year in America alone
 - > 3 Million people living with the effects of stroke
- Stroke treatment costs more than \$40+Billion/yr
- 80% of all strokes block blood-flow to brain
- New treatments are available if given in time
 - t-PA reduces disability if given within 3 hours
 - majority of patients miss the 3 hour treatment window

Need: Other Potential Applications

DEFINING THE FUTURE

- Any time-sensitive or remote care/supervision situation where remote expertise is needed including Non-Medical Scenarios
 - Long distance transports
 - Trauma calls
 - Pediatric care, high-risk deliveries, others
 - Bomb threat assessment/First scene responders
 - Combat casualties
 - WMD, scene command, etc.

NORTHROP GRUMMAN

Project History: MTS Prototype

DEFINING THE FUTURE

Mobile Wireless Communications

- Wireless transmission of Audio, Video, and Vital Sign data
- Integration of existing commercial technologies
- Modular, standards-based, opensystem components
- Cost-sensitive approach

Ambulance Configuration

Speaker-Phone Microphone Digital Camera

4 digital cellular phones

- •Audio
- •Video
- Patient Data
 - Records
 - Numerical VS
 - Waveform VS
 - Blood Chem

Video and Communications Computer

Patient Vital Signs Monitor

Receiving Facility

En-Route Remote Neurological Exam

Demonstrated Clinical Value

- NLM Stroke Transport Research using NIH Stroke Scale
 - Tested through >24 Patient Transports
 - Results: deemed of significant value in aiding diagnostic decisions and reducing time to treatment
- Disaster Management
 - Tested in conjunction with a BWI Fire&EMS Field Exercise (multiple mass casualty scenarios)
 - Results: transmitted data deemed of significant value in aiding diagnostic decisions

MTS Findings: QoS is Critical

Transmitted data has significant diagnostic value,

Quality of Service (QoS) issues limited the utility

- Reliability
 - High transmission error rate
 - High disconnection rate
 - Embedded systems issues
- Bandwidth/Data Throughput
 - Low bandwidth = limited data throughput
 - Unpredictability of bandwidth availability

NORTHROP GRUMMAN

Systems Architecture Enhancements

DEFINING THE FUTURE

- Total rewrite of applications code
 - Current Java enhancements
 - Superior control of underlying communications
- Leverage Superior Commercial Fractal/Wavelet Compressio
 - 1frame/10 seconds => ~2frames/second (or better)
- More Stable Mobile Systems
 - Modernize the platforms and services
- More Robust Wireless Connectivity/Throughput
 - Migration to IP-based communications
 - Management of overlapping wireless coverage
- Reduce Size & Weight to Support Out-of-Vehicle At-Scene

Key NGI Technologies

QoS Control for Mobile Wireless Data Transmission

- Integration of IP and dial-up connectivity
- Interactive control of transmission priorities
- Transmission layer-aware application
- Prioritization of data packets/channels
- Intelligent packet routing for higher bandwidth/reliability of end-to-end connection
- Secure protocols

Project Quality of Service Simulator

DEFINING THE FUTURE

Allows determining the *requisite* QoS for each task model

Down-selection of Commercial Codecs

Java Compression Comparison Toolkit allows *objective AND subjective* comparison of codec performance

Modular Viewer Adjustable QoS

DEFINING THE FUTURE

Bi-Directional QoS Controls and Region of Interest Selection

Mobile/Field Transmission System

Multi-channel Vehicle Transmission System with QoS-savvy Comm

NORTHROP GRUMMAN

QoS Optimizing Packet-Packing

Ш	Queue:41	Channel	Packet	Time (ms)	Average (ms)	Failed
Ш	675:5/5	Wireless Modem	1024:3/5	1062	844	0
Ш	668:1/1	Wireless Data Modem 1	1024 : 4/5	3392	1268	0
П	1024:1/5	Wireless Data Modem 2	1024 : 2/5	2069	2841	0
П	1024 : 2/5	Wireless Data Modem 3	589 : 5/5	3842	3268	0
П	1024:3/5	Wireless Data Modem4	994 : 1/1	2463	2843	0
П	1024 : 4/5					
П	689:5/5					
П	694 : 1/1					
rî	-		-L Dunna Mahila	^	. I	
Ц.	Preview General Props Video Props Vital Props Mobile Communications					

End-to-end latency and overhead is expensive

More efficient transmission by maximizing packet data payload

Multi-Channel Bandwidth Aggregation

Aggregate bandwidth achieved using 4-cellular lines ~6Kb/s

NORTHROP GRUMMAN Smaller Lighter Packaging

Portable 'BackPack' Packaging of Mobile System

Note: Metricom Richochet IP Modem

Smaller Lighter Packaging

DEFINING THE FUTURE

Briefcase: Lightweight, self-contained, ruggedized packaging

NORTHROP GRUMMAN Collaborative Field Trials: At-Scene

NORTHROP GRUMMAN

Two-Stage Data Transmission

DEFINING THE FUTURI

Miniature Wireless Digital Camera *note smaller than 9volt battery

Mass Casualty Response: EPLEX

WMD HazMat Response: EPLEX

Significant Accomplishments

DEFINING THE FUTURE

Demonstrated use of multiple wireless communications schemes

- use of both analog and digital cellular systems from multiple providers
- use of other wireless communications links in conjunction with cellular links
 - Verizon CDMA over IP aircard (equivalent to approximately 2 cell phones)
 - Metricom Ricochet IP network (equivalent to approximately 4 cell phones but network currently is inactive)
- use of Bluetooth 802.11 wireless for short-range out-of-vehicle camera connectivity

Demonstrated concurrent operations of multiple systems/connections

- concurrent operations of 6 cell phones (through two different service) providers) with CDMA over IP aircard
- concurrent operations of 2 mobile telemedicine systems
- use of out-of-vehicle EMT portable system with 4 cell phones
- Demonstrated sufficient QoS for stroke and pediatric transport models

Significant Accomplishments

Demonstrated requisite Quality of Service (QoS) through:

- Automatic connection/reconnection of communications links
- Region of Interest (ROI) selection for higher detail image transmission
 - context driven by physician
 - allows physician to optimize bandwidth utilization to support changing needs
- Automatic channel selection to optimize use of available bandwidth [dynamic adaptive line/channel management]
- Individual picture selection for high priority image transmission [for store-and-forward to transmit more video than slow-scan images]
- Compression Algorithm selectable/modular [implemented using an open standard codec so can dynamically change algorithms, image size, quality, and change any other settings that an individual algorithm may contain]
- Automatic packet stuffing to maximize amount of data transmitted across available links

Demonstrated secure communications

- Wireless transmission security through
 - Proprietary (optimized compressed) communications software at Tx/Rx devices
 - Intercepted communications can not be reassembled without entire (decoded) data stream
 - Vendor provided digital cellular encryption

Significant Accomplishments

DEFINING THE FUTURE

Demonstrated concurrent transmission of dissimilar clinical data

- Slow and medium speed video
- Audio
- Digital vital sign data and waveform data (from Propag equipment)

Demonstrated easy to use web-based physician interfaces

- Web browser based intuitive point-and-click remote access
- Remote access controls over Internet secure from home or remote facility
- Modular design to easily reconfigure for different clinical models
- Developed and physician approved GUIs for stroke and pediatric transport task models

Demonstrated minimally intrusive EMT interface

- Ceiling mounted camera and microphone
- Easy Propaq connectivity
- 'turn-key' on/off operation

Some Unexpected Observations

DEFINING THE FUTURE

- Vigilant security posture is not enough
 - On-going virus, worm, and intrusion attacks
- Dynamic network (in)stability
 - Shifting commercial systems stability
 - 'Own-worst-enemy' problem: in-house changes
 - Need for robust proactive error detection/notification
 - Need for calibration diagnostics
- Imaging 'artifacts' may be beneficial
 - Slight edge-enhancement eases subtle motion detection
- Commercial 3G and cellular-camera progress

Ongoing Research

Self-scaling Applications

- Have demonstrated two simultaneous mobile systems in operation
- Scale to support regional fielding over multiple concurrent systems

Context-sensitive QoS Optimization

- Have demonstrated self optimizing communications software with region of interest selection (by receiving physician) and high priority image selection (by sending EMT or triggered by physician)
- Receiving physician able to alter and reprioritize data transmission characteristics depending upon model context, e.g., adjust image quality vs. frame rate, waveform sensors on/off, etc.

Wireless Applications

Integration of new additional wireless technologies (e.g., multiple IP connectivity)

Nomadic Applications (including Two-Stage Transmission)

- Have demonstrated nomadic (mobile telemedicine) applications
- Additional two-stage (out of vehicle) work underway

DEFINING THE FUTURE Ongoing Research

Demonstrate Clinical Value for additional regional task models

- Focused regional 911 response (in Baltimore area)
- En-route Task Models
- At-Disaster Site Task Models

Ongoing System Enhancements

- Form-factor (size, weight, battery life)
- Compression codecs and broader standards support

Integrate additional medical tools

- Blood chemistry monitoring device
- Electronic stethoscope
- Triage tag barcode reader

Questions?

Point of Contact

DEFINING THE FUTURE

For more information, please contact:

David M. Gagliano

(David.Gagliano@NGC.com)

Northrop Grumman

12011 Sunset Hills Road

Reston, Va 20190